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Digital Transformation in Blast Furnaces:
Predictive Model for Intelligent
Monitoring of Main Runner Wear

The ironmaking industry increasingly seeks accurate modelling of operational variables to predict refractory

wear in blast furnace main runners. Understanding the factors influencing refractory wear enables safer, more
cost-effective, more sustainable, and high-performance hot metal production. However, this task remains
challenging due to the complex and often nonlinear interactions between process variables, which are not yet fully
understood. Traditionally, industry decisions rely on experience or indirect methods. This study presents a robust
predictive model to support process engineers in forecasting refractory wear in blast furnace main runners. By
integrating unsupervised clustering techniques with a meta-regressor, a high-precision model for predicting
refractory wear was developed. The results provide valuable insights for optimising operational strategies,
extending refractory lifespan, and enhancing decision-making in blast furnace operations.

I
Introduction

The blast furnace route remains the dominant steelmaking
process due to its high productivity, continuous operation,
and cost efficiency. Recent advancements in process control
focus on improving energy efficiency and reducing
emissions in hot metal production.

One of the main challenges in blast furnace operations is
optimising tapping practices and runner designs in the
casthouse area. The performance of refractory linings in
main runners is critical for operational stability. Well-
designed systems reduce worker exposure in the casting
area and improve safety. Enhancing refractory performance
through advanced technologies, from installation to
predictive monitoring, increase productivity and efficiency.

In an era where Industry 4.0 and digitalisation are reshaping
industrial processes, leveraging big data, artificial
intelligence, and predictive modelling has become a key
differentiator for competitive advantage. RHI Magnesita
stands at the forefront of this transformation by integrating
sophisticated analytics into refractory wear prediction for
blast furnace runners, moving beyond traditional monitoring
methods towards proactive decision-making tools. By
combining scanner measurements with production data, an
algorithm identifies critical wear patterns, such as higher
corrosion rates during process initiation or throughout blast
furnace runners’ operation. This analytical approach aligns
with a published framework [1], which highlights the strategic
importance of data-driven decision-making in outperforming
industry peers. By investing in advanced predictive models,
RHI Magnesita strengthens operational reliability, reduces
unplanned downtime, and enhances process efficiency,
ensuring its leadership in refractory solutions for the iron and
steel industry.

I
Monitoring and Requirements for Blast Furnace Runner
Performance

During operation of the main runner in the blast furnace
casthouse, various complex chemical and physical wear
mechanisms act simultaneously, promoting degradation of
the refractory working lining through contact with molten hot
metal and slag at high temperatures [2,3]. Certain
operational practices in the casthouse, as well as
intermittent furnace operation—requiring successive
drainages of the main runner throughout its campaign—
further accelerate refractory wear due to increased thermal
cycling and the resulting thermomechanical stress on the
runner's castable material.

In many cases, draining the main runner is necessary to
directly assess the remaining thickness of the refractory
castable wall. Through inspection, in which the remaining
thickness is measured, it is possible to safely estimate a
maximum campaign limit for the runner. Practical examples
illustrating the influence of the number of main runner
drainages on cracking and the remaining refractory
thickness are shown in Figure 1.

It was observed that in the same main runner of a blast
furnace, with an average production of 10000 tonnes/day,
operated under the same campaign conditions in terms of
hot metal production, the formation of surface cracks on the
working lining was directly influenced by the number of
drainages. This example highlights that the operational
intermittency of the runner induces complex
thermomechanical mechanisms in the lining castable,
intensifying its expansion and contraction, which
consequently leads to crack formation. These cracks in the
refractory lining significantly increase the operational risk of
the main runner, making it more susceptible to hot metal
infiltration when returned to operation.



In addition to the operational risks that the main runner is
exposed to from successive drainage cycles, the metallic
losses resulting from this process must also be considered.
The hot metal removed during runner drainage cannot be
reused in the subsequent steelmaking route and is instead
discarded and processed as scrap. This hot metal scrapping
increases production costs and negatively impacts CO,
emissions, as for every 1 tonne of hot metal produced,
approximately 2 tonnes of CO, gas are emitted [4].

Basis of Predictive Model Development

For the runner wear inspection, laser scanning is used as a
benchmarking methodology, enabling a comprehensive
assessment of wear across the entire runner lining with high
precision, regardless of the temperature of the remaining
material. Additionally, the laser scanning technique allows for
highly accurate monitoring of wear in the entire slag line
region of the runner, particularly in designs where this region
remains exposed between tapping cycles. All wear data
generated through laser scanning is digitised using
automation software, which almost instantly overlays the
point cloud of the new (reference) runner with that obtained
after the start of operations [4,5]. The laser scanning method
for the runner was employed in the development of this
model.

For construction of the predictive algorithm to assess wear
of the blast furnace main runner, unsupervised machine
learning techniques were applied. This method identifies
complex patterns in existing data and uses them to make
predictions on previously unknown data [6]. In the process
under discussion, clustering was performed based on the
cumulative tapped hot metal. Subsequently, four regression
models were individually trained. These models generate
their respective predictions, and the final forecast is obtained
by averaging their outputs. A flow chart of the developed
machine learning system is shown in Figure 2.

The technique used is known as ensemble learning,
employing the Voting Regressor method to generate the
final prediction [7,8]. The principle behind this approach is
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that combining predictions from different models can reduce
both bias and variance, resulting in a more accurate
forecast.

The data acquisition frequency used for constructing the
models during a runner campaign was as follows:

o Scanner data: Three measurements a week of the
remaining slag line of the runner and the entire wall when
the runner was drained.

o Product data: Production control results of the castable
batches used for runner installation.

o Application data: Amount of binder used to process each
tonne of castable applied to the runner.

o Process data: Measured variables from the blast furnace
tapping process (e.g., tapping temperature, hot metal and
slag chemical composition, slag rate, and tapping time),
recorded for each tapping.

Figure 2.

Flowchart of the developed machine learning system for
predicting refractory wear in the blast furnace main runner.
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Figure 1.

Influence of main runner drainages on the working refractory lining. Inspection results at the end of the campaign for a runner
with (a, b) 6 drainages during operation and hot metal production of 106912 tonnes, and (c, d) 2 drainages during operation and
hot metal production of 111415 tonnes.




I
Results: Mathematical Modelling for Monitoring
Refractory Performance

Using historical data from two years of main runner
campaigns—combined with information on the refractory
lining quality, installation parameters, and process variables
from two different blast furnaces—a predictive model was
implemented to estimate the wear of the main runner’s
working lining for each blast furnace. The model’s
predictions were then compared to actual measured wear to
evaluate accuracy. The results showed a maximum relative
error of less than 20% in predicting the remaining wall
thickness of the runner lining. Given that at the end of a
runner’s campaign the minimum allowable remaining wall
thickness is approximately 200 mm, this corresponds to a
maximum absolute error on the order of 40 mm. Figure 3

Figure 3.

Comparison of the measured and predicted remaining
refractory thickness at the slag line for a specific tapping cycle
and the corresponding predicted safety margins.
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presents the predicted remaining refractory thickness for a
specific tapping cycle of a blast furnace runner, along with
the corresponding safety margin for that prediction. Notably,
the model’s accuracy in estimating the remaining slag line
thickness at the end of the runner’s campaign was
approximately 90%, which is considered very high for this
application.

One challenge in wear measurement is that the remaining
lining thickness at the hot metal line of the main runner can
only be obtained after draining the runner. During normal
operation, this region is submerged under the metal bath,
which prevents the laser scanner from capturing the lining
profile in that zone. Being able to accurately predict the wear
at the hot metal line through mathematical and statistical
correlations with the slag line wear and operational data
becomes a highly valuable tool for the customer, as it
enables more informed and safer decision-making. This
approach provides operators with important information that
would otherwise only be available via a risky and time-
consuming drainage procedure.

Figure 4 shows the model-predicted and actual measured
values for the hot metal and slag lines, considering the
minimum remaining refractory thickness during runner
campaigns of CSN’s Blast Furnace 3 (4 tapholes and an
internal volume of 4250 m?3). Across all analysed cases, the
model predictions closely followed the trend of the measured
data, with relatively low deviations. Notably, for the 1st
campaign in 2025 (main runner #1 and #2), the model
showed high accuracy for both the hot metal and slag lines,
with discrepancies of less than 10 mm—corresponding to
deviations under 2.5% of the total remaining refractory
thickness. For the 4" and 5" campaigns in 2024 (main
runner #1, #2, and #4), deviations also remained within
moderate ranges, albeit with slightly higher local variations,
yet still falling within acceptable limits for industrial refractory
wear prediction applications.

Figure 4. Comparison of the measured and model-predicted minimum remaining refractory thickness at the hot metal and slag
lines in main runners of CSN’s Blast Furnace 3 for various campaigns (1%, 4t", and 5%) in 2024 and 2025.
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Such performance indicates that the model possesses
robust generalisation capacity, effectively capturing the
dominant mechanisms driving refractory wear in the hot
metal and slag line regions. The observed level of accuracy
substantiates the model’s applicability in operational
environments, both as a decision-support tool for
maintenance planning and as a reliable framework for
validating operational strategies aimed at extending the
campaign life of the main runner lining.

One of the most significant practical benefits of the
predictive model is its ability to extend the main runner
campaign without requiring drainage for inspection (i.e.,
enabling “hot” condition monitoring of wear). Whether this
extension is feasible depends on the confidence in the
model’s accuracy, which in turn is built upon the laser scan
measurements of slag line wear taken during operation, as
well as the blast furnace’s operational parameters and the
specific characteristics of the castable lining considered in
the model.

Figure 5 illustrates substantial campaign extensions
achieved for a main runner at Ternium Brazil’s Blast Furnace
2 (which has two tapholes) using the model’s predictions. In
this case, the end-of-campaign criterion for the runner was
the remaining thickness at the hot metal line. The model was
used to predict the hot metal line wear based on the
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observed slag line wear, eliminating the need for runner
drainage. By relying on the model's accurate predictions, the
operators were able to safely extend the runner’s campaign
beyond the point where, traditionally, a drainage would have
been performed, thus optimising the runner’s service life
using technical and reliable information.

I
Conclusion

In addition to accurately predicting the remaining campaign
of the main runner’s refractory lining, the insights generated
by the applied machine learning techniques are enabling a
deeper understanding of the wear mechanisms affecting the
runner. For example, data analysis has revealed a clear
correlation between continuous runner operation (with
minimal drainages) and reduced wear rates, in contrast to
the accelerated damage seen with frequent cooling cycles
(as in the case of multiple drainages). These findings
corroborate operational observations and provide a
quantitative basis to evaluate different practices.

The use of this predictive model to assess the remaining
refractory lining thickness of the blast furnace main runner—
by intelligently combining blast furnace process data, laser
scan measurements of the remaining lining, and information
on the refractory material and its installation—provides
substantial value to casthouse operations. This digital

Figure 5.

Main runner campaign extensions based on the comparison between model-predicted and measured refractory thickness at the
slag line of the main runner at different stages of campaigns at Ternium Brazil’s Blast Furnace 2.
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monitoring tool significantly enhances operational safety and
reduces worker exposure by minimising the need for manual
inspections in the casthouse. It can eliminate the need for
premature runner drainage, thereby avoiding the associated
hot metal production losses and preventing unnecessary
CO, emissions from reprocessing the lost metal. Moreover, it
increases equipment availability by allowing the runner to
remain in service for its optimal campaign length. In
summary, this predictive wear monitoring solution,
developed by RHI Magnesita, empowers our customers to
achieve safer, more efficient, and more sustainable blast
furnace operations.

As a next step, the model is expected to be adopted by a
broader range of customers. This expansion will not only
support scalability and generalisation, but will also enrich the
data set, enabling further model improvements and a deeper
understanding of the underlying processes.
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