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Digital Transformation in Blast Furnaces: 
Predictive Model for Intelligent 
Monitoring of Main Runner Wear 
The ironmaking industry increasingly seeks accurate modelling of operational variables to predict refractory  
wear in blast furnace main runners. Understanding the factors influencing refractory wear enables safer, more  
cost-effective, more sustainable, and high-performance hot metal production. However, this task remains 
challenging due to the complex and often nonlinear interactions between process variables, which are not yet fully 
understood. Traditionally, industry decisions rely on experience or indirect methods. This study presents a robust 
predictive model to support process engineers in forecasting refractory wear in blast furnace main runners. By 
integrating unsupervised clustering techniques with a meta-regressor, a high-precision model for predicting 
refractory wear was developed. The results provide valuable insights for optimising operational strategies, 
extending refractory lifespan, and enhancing decision-making in blast furnace operations. 

Introduction

The blast furnace route remains the dominant steelmaking 
process due to its high productivity, continuous operation, 
and cost efficiency. Recent advancements in process control 
focus on improving energy efficiency and reducing 
emissions in hot metal production.

One of the main challenges in blast furnace operations is 
optimising tapping practices and runner designs in the 
casthouse area. The performance of refractory linings in 
main runners is critical for operational stability. Well-
designed systems reduce worker exposure in the casting 
area and improve safety. Enhancing refractory performance 
through advanced technologies, from installation to 
predictive monitoring, increase productivity and efficiency.

In an era where Industry 4.0 and digitalisation are reshaping 
industrial processes, leveraging big data, artificial 
intelligence, and predictive modelling has become a key 
differentiator for competitive advantage. RHI Magnesita 
stands at the forefront of this transformation by integrating 
sophisticated analytics into refractory wear prediction for 
blast furnace runners, moving beyond traditional monitoring 
methods towards proactive decision-making tools. By 
combining scanner measurements with production data, an 
algorithm identifies critical wear patterns, such as higher 
corrosion rates during process initiation or throughout blast 
furnace runners’ operation. This analytical approach aligns 
with a published framework [1], which highlights the strategic 
importance of data-driven decision-making in outperforming 
industry peers. By investing in advanced predictive models, 
RHI Magnesita strengthens operational reliability, reduces 
unplanned downtime, and enhances process efficiency, 
ensuring its leadership in refractory solutions for the iron and 
steel industry.

Monitoring and Requirements for Blast Furnace Runner 
Performance

During operation of the main runner in the blast furnace 
casthouse, various complex chemical and physical wear 
mechanisms act simultaneously, promoting degradation of 
the refractory working lining through contact with molten hot 
metal and slag at high temperatures [2,3]. Certain 
operational practices in the casthouse, as well as 
intermittent furnace operation—requiring successive 
drainages of the main runner throughout its campaign—
further accelerate refractory wear due to increased thermal 
cycling and the resulting thermomechanical stress on the 
runner's castable material.

In many cases, draining the main runner is necessary to 
directly assess the remaining thickness of the refractory 
castable wall. Through inspection, in which the remaining 
thickness is measured, it is possible to safely estimate a 
maximum campaign limit for the runner. Practical examples 
illustrating the influence of the number of main runner 
drainages on cracking and the remaining refractory 
thickness are shown in Figure 1. 

It was observed that in the same main runner of a blast 
furnace, with an average production of 10000 tonnes/day, 
operated under the same campaign conditions in terms of 
hot metal production, the formation of surface cracks on the 
working lining was directly influenced by the number of 
drainages. This example highlights that the operational 
intermittency of the runner induces complex 
thermomechanical mechanisms in the lining castable, 
intensifying its expansion and contraction, which 
consequently leads to crack formation. These cracks in the 
refractory lining significantly increase the operational risk of 
the main runner, making it more susceptible to hot metal 
infiltration when returned to operation.
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In addition to the operational risks that the main runner is 
exposed to from successive drainage cycles, the metallic 
losses resulting from this process must also be considered. 
The hot metal removed during runner drainage cannot be 
reused in the subsequent steelmaking route and is instead 
discarded and processed as scrap. This hot metal scrapping 
increases production costs and negatively impacts CO2 
emissions, as for every 1 tonne of hot metal produced, 
approximately 2 tonnes of CO2 gas are emitted [4].

Basis of Predictive Model Development

For the runner wear inspection, laser scanning is used as a 
benchmarking methodology, enabling a comprehensive 
assessment of wear across the entire runner lining with high 
precision, regardless of the temperature of the remaining 
material. Additionally, the laser scanning technique allows for 
highly accurate monitoring of wear in the entire slag line 
region of the runner, particularly in designs where this region 
remains exposed between tapping cycles. All wear data 
generated through laser scanning is digitised using 
automation software, which almost instantly overlays the 
point cloud of the new (reference) runner with that obtained 
after the start of operations [4,5]. The laser scanning method 
for the runner was employed in the development of this 
model.

For construction of the predictive algorithm to assess wear 
of the blast furnace main runner, unsupervised machine 
learning techniques were applied. This method identifies 
complex patterns in existing data and uses them to make 
predictions on previously unknown data [6]. In the process 
under discussion, clustering was performed based on the 
cumulative tapped hot metal. Subsequently, four regression 
models were individually trained. These models generate 
their respective predictions, and the final forecast is obtained 
by averaging their outputs. A flow chart of the developed 
machine learning system is shown in Figure 2.

The technique used is known as ensemble learning, 
employing the Voting Regressor method to generate the 
final prediction [7,8]. The principle behind this approach is 

that combining predictions from different models can reduce 
both bias and variance, resulting in a more accurate 
forecast. 

The data acquisition frequency used for constructing the 
models during a runner campaign was as follows:

•	 Scanner data: Three measurements a week of the 
remaining slag line of the runner and the entire wall when 
the runner was drained.

•	 Product data: Production control results of the castable 
batches used for runner installation.

•	 Application data: Amount of binder used to process each 
tonne of castable applied to the runner.

•	 Process data: Measured variables from the blast furnace 
tapping process (e.g., tapping temperature, hot metal and 
slag chemical composition, slag rate, and tapping time), 
recorded for each tapping.

Figure 1.
Influence of main runner drainages on the working refractory lining. Inspection results at the end of the campaign for a runner 
with (a, b) 6 drainages during operation and hot metal production of 106912 tonnes, and (c, d) 2 drainages during operation and 
hot metal production of 111415 tonnes.

(a) (c)(b) (d)

Figure 2. 
Flowchart of the developed machine learning system for 
predicting refractory wear in the blast furnace main runner.
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Results: Mathematical Modelling for Monitoring 
Refractory Performance

Using historical data from two years of main runner 
campaigns—combined with information on the refractory 
lining quality, installation parameters, and process variables 
from two different blast furnaces—a predictive model was 
implemented to estimate the wear of the main runner’s 
working lining for each blast furnace. The model’s 
predictions were then compared to actual measured wear to 
evaluate accuracy. The results showed a maximum relative 
error of less than 20% in predicting the remaining wall 
thickness of the runner lining. Given that at the end of a 
runner’s campaign the minimum allowable remaining wall 
thickness is approximately 200 mm, this corresponds to a 
maximum absolute error on the order of 40 mm. Figure 3 

presents the predicted remaining refractory thickness for a 
specific tapping cycle of a blast furnace runner, along with 
the corresponding safety margin for that prediction. Notably, 
the model’s accuracy in estimating the remaining slag line 
thickness at the end of the runner’s campaign was 
approximately 90%, which is considered very high for this 
application.

One challenge in wear measurement is that the remaining 
lining thickness at the hot metal line of the main runner can 
only be obtained after draining the runner. During normal 
operation, this region is submerged under the metal bath, 
which prevents the laser scanner from capturing the lining 
profile in that zone. Being able to accurately predict the wear 
at the hot metal line through mathematical and statistical 
correlations with the slag line wear and operational data 
becomes a highly valuable tool for the customer, as it 
enables more informed and safer decision-making. This 
approach provides operators with important information that 
would otherwise only be available via a risky and time-
consuming drainage procedure. 

Figure 4 shows the model-predicted and actual measured 
values for the hot metal and slag lines, considering the 
minimum remaining refractory thickness during runner 
campaigns of CSN’s Blast Furnace 3 (4 tapholes and an 
internal volume of 4250 m3). Across all analysed cases, the 
model predictions closely followed the trend of the measured 
data, with relatively low deviations. Notably, for the 1st 
campaign in 2025 (main runner #1 and #2), the model 
showed high accuracy for both the hot metal and slag lines, 
with discrepancies of less than 10 mm—corresponding to 
deviations under 2.5% of the total remaining refractory 
thickness. For the 4th and 5th campaigns in 2024 (main 
runner #1, #2, and #4), deviations also remained within 
moderate ranges, albeit with slightly higher local variations, 
yet still falling within acceptable limits for industrial refractory 
wear prediction applications.
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Figure 4. Comparison of the measured and model-predicted minimum remaining refractory thickness at the hot metal and slag 
lines in main runners of CSN’s Blast Furnace 3 for various campaigns (1st, 4th, and 5th) in 2024 and 2025.

Figure 3. 
Comparison of the measured and predicted remaining 
refractory thickness at the slag line for a specific tapping cycle 
and the corresponding predicted safety margins.
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Such performance indicates that the model possesses 
robust generalisation capacity, effectively capturing the 
dominant mechanisms driving refractory wear in the hot 
metal and slag line regions. The observed level of accuracy 
substantiates the model’s applicability in operational 
environments, both as a decision-support tool for 
maintenance planning and as a reliable framework for 
validating operational strategies aimed at extending the 
campaign life of the main runner lining.

One of the most significant practical benefits of the 
predictive model is its ability to extend the main runner 
campaign without requiring drainage for inspection (i.e., 
enabling “hot” condition monitoring of wear). Whether this 
extension is feasible depends on the confidence in the 
model’s accuracy, which in turn is built upon the laser scan 
measurements of slag line wear taken during operation, as 
well as the blast furnace’s operational parameters and the 
specific characteristics of the castable lining considered in 
the model. 

Figure 5 illustrates substantial campaign extensions 
achieved for a main runner at Ternium Brazil’s Blast Furnace 
2 (which has two tapholes) using the model’s predictions. In 
this case, the end-of-campaign criterion for the runner was 
the remaining thickness at the hot metal line. The model was 
used to predict the hot metal line wear based on the 

observed slag line wear, eliminating the need for runner 
drainage. By relying on the model's accurate predictions, the 
operators were able to safely extend the runner’s campaign 
beyond the point where, traditionally, a drainage would have 
been performed, thus optimising the runner’s service life 
using technical and reliable information.

Conclusion

In addition to accurately predicting the remaining campaign 
of the main runner’s refractory lining, the insights generated 
by the applied machine learning techniques are enabling a 
deeper understanding of the wear mechanisms affecting the 
runner. For example, data analysis has revealed a clear 
correlation between continuous runner operation (with 
minimal drainages) and reduced wear rates, in contrast to 
the accelerated damage seen with frequent cooling cycles 
(as in the case of multiple drainages). These findings 
corroborate operational observations and provide a 
quantitative basis to evaluate different practices. 

The use of this predictive model to assess the remaining 
refractory lining thickness of the blast furnace main runner—
by intelligently combining blast furnace process data, laser 
scan measurements of the remaining lining, and information 
on the refractory material and its installation—provides 
substantial value to casthouse operations. This digital 

Figure 5. 
Main runner campaign extensions based on the comparison between model-predicted and measured refractory thickness at the 
slag line of the main runner at different stages of campaigns at Ternium Brazil’s Blast Furnace 2.
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monitoring tool significantly enhances operational safety and 
reduces worker exposure by minimising the need for manual 
inspections in the casthouse. It can eliminate the need for 
premature runner drainage, thereby avoiding the associated 
hot metal production losses and preventing unnecessary 
CO2 emissions from reprocessing the lost metal. Moreover, it 
increases equipment availability by allowing the runner to 
remain in service for its optimal campaign length. In 
summary, this predictive wear monitoring solution, 
developed by RHI Magnesita, empowers our customers to 
achieve safer, more efficient, and more sustainable blast 
furnace operations.

As a next step, the model is expected to be adopted by a 
broader range of customers. This expansion will not only 
support scalability and generalisation, but will also enrich the 
data set, enabling further model improvements and a deeper 
understanding of the underlying processes.


